SECTION A

ALL SERIES

BATTERY AND CABLES ALL SERIES

CONTENTS

Division	Subject	Page No
ı	TROUBLE DIAGNOSIS:	
	Battery and Cable Trouble Diagnosis	120-2
	421 Battery Test	120-4
	Hydrometer Test of Battery	120-5
H	DESCRIPTION AND OPERATION:	
	General Battery Information	120-6
Ш	ADJUSTMENTS AND MINOR SERVICE:	
	Fusible Link Replacement	120-8
	Battery Recharging	120-9
	Periodic Battery Inspection and Service	120-10
	Cleaning Cable Terminals	120-12
IV	REMOVAL AND INSTALLATION:	
	Battery Removal and Installation	120-12
	Battery Cable Removal and Installation	120-12
V	OVERHAUL AND MAJOR SERVICE: (Not Applicable)	
VI	SPECIFICATIONS:	
	Battery Specifications	120-13

DIVISION I

TROUBLE DIAGNOSIS

120-1 BATTERY AND CABLE TROUBLE DIAGNOSIS

A. Quick Check of Battery and Cables

Whenever electrical trouble develops, it is desirable to make a quick check of the battery and cables to make certain that this source of current is in good condition, securely connected, and is functioning properly. This check will also give a good check on the cranking system.

- 1. Turn on the lights. They should burn steadily and with normal brilliance.
- 2. With lights burning, operate the cranking motor. Either have the headlights shining on a wall so their brilliance can be noted or have someone watching the headlights.
- 3. When cranking motor solenoid switch is closed, one of the following conditions will occur:

a. Lights will stay bright or will dim slightly if temperature is cold, and engine will be cranked at normal speed.

This condition indicates that nothing is wrong with the battery, cables, and cranking system.

b. Lights will go out.

If lights go out as cranking motor solenoid switch is closed, it indicates a poor connection in the circuit between battery and cranking motor. Check battery cables and clean and tighten loose or corroded terminals. See paragraph 120-8.

c. Lights will dim considerably.

If lights dim considerably as cranking motor solenoid switch is closed, it indicates that the battery is run down, or there is a condition in cranking motor or engine which causes an excessive current drain on the battery. A low battery will be indicated by a clattering noise in cranking motor solenoid because the battery cannot sustain the voltage required to hold solenoid plunger "in" after switch contacts close and the "pull in" winding is shorted out.

Test battery with a 421 Battery Test. See paragraph 120-2. If battery is found to be in good condition, check cranking motor.

d. Lights will stay bright but no cranking action will take place.

If lights stay bright but no cranking action occurs when cranking motor solenoid switch is closed, it indicates an open circuit in cranking motor, switch, or control circuit. See paragraph 68-11.

B. Testing Resistance of Cables and Terminal Connections

Battery cables and terminal connections may be tested with equipment comprising a voltmeter (5 volts maximum), ammeter of 300 or more amperes capacity, and carbon pile rheostat having a minimum capacity of 300 amperes connected in series with the ammeter.

- 1. Adjust rheostat to provide maximum resistance ("Off" position).
- 2. Connect ammeter positive lead to post on starting motor. Connect ammeter negative lead to one side of rheostat and connect other side of rheostat to ground on engine, preferably at point where battery ground strap is attached. In the instrument shown in Figure 120-1 the ammeter and rheostat are connected in series inside the case.
- 3. Connect voltmeter negative lead to post on starting motor. Use prod with voltmeter lead, if necessary, to

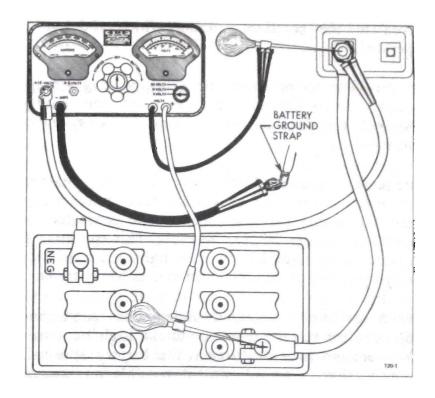


Figure 120-1 Battery, Cable Test Connections

insure direct contact with the terminal stud. Do not connect to the ammeter lead clip. Attach a prod to voltmeter positive lead and apply the prod to center of battery positive post. See Figure 120-1. Make sure that clips of voltmeter leads have clean metal contact with prods.

- 4. Adjust rheostat until ammeter reads 200 amperes, immediately read voltmeter, then turn rheostat to starting ("Off") position to avoid excessive drain on battery. Voltage drop across battery positive cable and terminal connections should not exceed 2/10 volt.
- 5. Connect voltmeter positive lead to ground on engine. Attach prod to voltmeter negative lead and apply prod to center of battery negative post. Voltage drop across the battery ground cable and terminal connections should not exceed 2/10 volt at 200 amps.
- 6. A reading in excess of 2/10 volt when testing either battery cable indicates excessive resistance in cable or connections. Clean and tighten cable terminals (subparagraph b below) and recheck for voltage drop. If voltage drop still exceeds 2/10 volt, replace cable with a genuine Buick cable to insure ample capacity.

C. Undercharge Failure of Battery

The most frequent trouble experienced with storage batteries is failure to maintain a state of charge sufficient to crank the engine and also furnish current to the ignition system, lights, and accessories. Failure to maintain a proper state of charge may be due to one or more of the following conditions:

1. Operating Conditions When determining cause of premature failure of a battery, consideration must be

given to the conditions under which the car is operated.

In very low temperature, the capacity of a storage battery is considerably reduced and the energy required for cranking the engine is considerably increased.

Frequent starting, particularly in cold weather, accompanied by short runs, may take more energy from the battery for cranking than the generator can replace in the limited running time. This condition is aggravated by night driving when lights are turned on, or by operation of an air conditioner in heavy traffic.

When the car is operated under these conditions, adjusting the voltage regulator to the high limit may allow enough increase to keep the battery at a safe state of charge (no adjustment possible on integral voltage regulator). If the high limit setting does not maintain a safe state of charge, an occasional booster charge should be given to the battery or an extra output generator obtained through dealer.

- 2. Low Charging Rate In case of premature battery failure, the charging rate of generator should always be checked and adjusted if below specifications. See paragraph 68-33 or 68-42.
- 3. Internal Condition The internal condition of the battery may be such that it cannot hold a charge satisfactorily. Check electrolyte level and test the battery, using the 421 Battery Test. See paragraph 120-2.

D. Overcharge Failure of Battery

A common cause of battery failure is overcharging, that is, continued input of excessive charging current

Figure 120-2 421 Battery Tester - Charger

after the battery has reached a fully-charged condition.

One evidence that a battery is being overcharged is the need for frequent addition of water to the battery in order to maintain the electrolyte level above the tops of the battery separators, since overcharging causes rapid water loss. When this becomes evident, the voltage setting of the voltage regulator should be checked. See paragraph 68-27, sub-paragraph b and 68-38.

120-2 421 BATTERY TEST

New Energizers which have become completely discharged over a relatively long period of time during vehicle storage should not be tested by the 421 Test Procedure. Energizers discharged to this degree cannot accurately be tested by any procedure, as they have no load capability and must be recharged.

Energizers that become discharged in actual service may be accurately tested by the 421 Test Procedure, as periods of inactivity are not involved.

Energizers that are merely discharged are not subject to warranty.

The following test procedure is recommended to determine whether the Energizer or 12-Volt Battery is good and usable, requires recharging, or should be replaced. Any deviation from this complete procedure may produce erroneous results.

421 Test Procedure

- 1. Visual Inspection The first step in testing the Energizer or 12-Volt Battery should be a visual inspection, which very often will save time, labor, and expense in determining the condition.
- a. Check for broken or cracked case or cover.
- b. Check for loose terminal posts.
- c. Check for defective or mutilated sealing compound.
- d. Check for other visible signs of physical damage.

Obvious damage, as a result of conditions described above, indicates the need for Energizer or battery replacement.

2. The 421 Test is a programmed test procedure consisting of a series of timed discharge and charge events, requiring approximately two to three minutes, that will determine the condition of the Energizer or battery with a high degree of accuracy when used in conjunction with this entire test procedure. The 421 Testers are produced by a number of different manufacturers and their directions for tester operation

should be carefully followed. General comments on overall 421 Tester operation follow:

- a. Energizers or batteries should *not* be charged prior to making this test. Defects within the unit can be hidden by the charging and erroneous test results will be obtained.
- b. Erratic or extremely low initial meter readings may indicate poor connections at the tester terminals. Obtain clean and tight connections before performing the 421 Test.
- c. All meter readings should be made immediately after the meter indicator light comes "on", even if the meter needle is still moving.
- d. If additional discharges are required after the initial discharge, set meter indicator following the last discharge cycle.
- e. Batteries designated as "bad" by the tester should be replaced.
- f. Batteries designated as "good", with no owner's complaint or indication of poor performance, should be left in service. Posts, cable clamps, and top should be cleaned, water should be added, and recharging should be performed, if required. For dependable and reliable battery service, the battery should be in at least a 75 percent state-of-charge.
- g. Batteries designated as "good", that are suspected of being questionable because of owner complaints or age of the battery, should be further tested by the Hydrometer Test.

120-3 HYDROMETER TEST OF BATTERY

The 421 Battery Test, as described in the previous paragraph, is the fastest and most accurate means of determining the serviceability of a one-piece cover battery. However, if a 421 Battery Tester is not available, a hydrometer test may be used on a battery that has failed to give proper service.

A. Hydrometer Test

- 1. Fully charge battery, as described under "Slow Charging".
- 2. Measure specific gravity of each cell, as described in subparagraph below.

Decide battery serviceability as follows:

- a. If all cells read between 1.230 and 1.310, the battery is okay. All it needed was a full charge.
- b. After fully charging battery, if any cell reads less

than 1.230, the battery is defective and should be replaced.

B. Use of Hydrometer

The hydrometer measures the percentage of sulphuric acid in the battery electrolyte in terms of specific gravity. As a battery drops from a charged to a discharged condition, the acid leaves the solution and enters the plates, causing a decrease in specific gravity of electrolyte. With a hydrometer, an indication of the concentration of the electrolyte is obtained. See Figure 120-3.

The specific gravity of the electrolyte varies, not only with the percentage of acid in the liquid but it also varies with temperature. As temperature increases, the electrolyte expands so that the specific gravity is reduced. As temperature drops, the electrolyte contracts so that the specific gravity increases. Unless these variations in specific gravity are taken into account, the specific gravity obtained by the hydrometer may not give a true indication of the concentration of acid in the electrolyte.

Correction can be made for temperature by adding .004, usually referred to as 4 "points of gravity", to the hydrometer reading for every 10 degrees F. that the electrolyte is above 80 degrees F., or subtracting .004 for every 10 degrees F. that electrolyte is below 80 degrees F. Figure 120-8 shows the exact correction

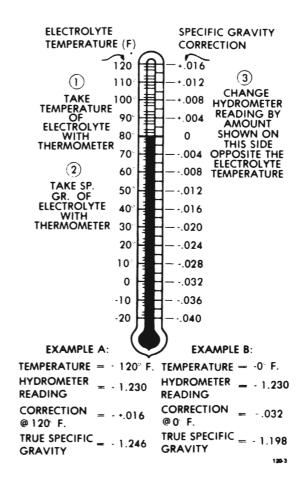


Figure 120-3 Specific Gravity Temperature Correction Scales

figure to use for any temperature above or below 80 degrees F., the three steps used in obtaining the corrected or true specific gravity and two examples showing how it is figured.

When using a hydrometer, observe the following points:

- 1. Hydrometer must be clean, inside and out, to insure an accurate reading.
- 2. Hydrometer readings must never be taken immediately after water has been added. The water must be thoroughly mixed with the electrolyte by charging for at least 30 minutes before hydrometer values are reliable.
- 3. If hydrometer has built-in thermometer, draw liquid into it several times to insure correct temperature before taking a reading.
- 4. Hold hydrometer vertically and draw in just enough liquid from battery cell so that float is free floating and with bulb fully released. Hold hydrometer at eye level so that float is vertical and free of outer tube, then take reading at surface of liquid. Disregard the curvation where the liquid rises against float stem due to surface tension.
- 5. Avoid dropping liquid on car or clothing, as it is extremely corrosive. Any liquid that drops should be washed off immediately with sode solution.

DIVISION II

DESCRIPTION AND OPERATION

120-4 GENERAL BATTERY INFORMATION

Every Buick is equipped with an Energizer, which is a type of battery having a one-piece cover. For 1972, all cars will have as standard equipment a side terminal battery. See Figure 120-4. This battery has screw on type connectors located at the side of the case. This greatly decreases the cause of terminal corrosion. Also, construction of the terminals is such that the mating cable connector seals the junction and provides a permanently tight and clean connection. The battery is mounted on the front fender skirt under the hood. The battery negative post is grounded to the engine cylinder head by a copper cable. The positive post is connected by an insulated copper cable to a post on the starting motor.

A. Registration of Battery

Delco-Remy battery dealers and distributors are prepared to carry out terms of the manufacturer's

Figure 120-4 Side Terminal Battery - All Series

warranty on Delco-Remy batteries. In order that Buick owners shall have the protection and benefit of this warranty, it is necessary for the dealer or car owner to register his battery with the local Delco-Remy battery dealer or distributor on all new car deliveries and on all deliveries of new replacement Delco-Remy batteries. The Battery Owner's Certificate is located in the Owner's Protection Plan Folder.

B. Care of Wet Batteries in Storage

Batteries in stored new cars, as well as batteries in stock, must be given regular attention to prevent sulphation of plates that may result from inactivity and self-discharge. All automotive wet batteries will slowly discharge on standing idle, whether in stored vehicles or in stock, and will self-discharge much faster when warm than when cold. Batteries in stock should be rotated and the older ones used first.

To minimize the extent of self-discharge, always store batteries fully charged and in a cool place where the temperature does not go below freezing. Every 30 days check the level of electrolyte, add water as required, and charge the batteries at a five (5) ampere rate until fully charged.

Batteries used for display purposes or standing in cars in storage must be treated in the same manner as batteries in stock.

When a new car, or new replacement battery, is delivered, make certain that it is fully charged and the electrolyte is at proper level. This is extremely important because the delivery of a partially discharged battery may not only lead to its return for

charging but may also result in shortened life of battery.

C. Importance of Maintaining Electrolyte at Proper Level

Water is the only component of the battery which is lost as the result of charging and discharging, and it must be replaced before the electrolyte level falls to the tops of the separators. If the water is not replaced and the plates become exposed, they may become permanently sulphated which would impair the performance of the plates. Also, the plates cannot take full part in the battery action unless they are completely covered by the electrolyte.

D. Importance of Keeping Battery Properly Charged

The battery has three major functions: (1) It provides a source of energy for cranking the engine; (2) It acts as a stabilizer to the voltage in the electrical system; and (3) It can, for a limited time, furnish energy when the demands of the electrical units in operation exceed the output of the generator.

In order for the battery to continue to function, it is necessary that current withdrawal from the battery be balanced by current input from the generator so that the battery is maintained in a properly-charged condition. If the outgo exceeds the input, the battery will become discharged so that it cannot supply sufficient energy.

The state-of-charge of the battery, as well as the temperature of the electrolyte, has an important bearing on its capacity for supplying energy. Battery efficiency is greatly reduced by decreased electrolyte temperature, as it has a decided numbing effect on its electrochemical action. Under high discharge, such as cranking, battery voltage drops to lower values in cold temperatures than in warm temperatures.

In extremely cold climates, it is important to keep batteries in a nearly full-charged condition to avoid the possibility of freezing which will damage any battery. See Figure 120-5.

Specific Gravity	Freezing Point
1.220 1.200	-35°F. -20°F.
1.160	0°F. 120-6

Figure 120-5 Battery Freezing Points

The following table shows the temperatures at which freezing will occur in electrolytes of different densities with specific gravity corrected to 80 degrees F.

E. Care of Dry Batteries in Storage

A "dry charge" battery contains fully-charged positive and negative plates but not electrolyte.

Dry charged batteries should be stored in a dry place away from excessive heat. A dry charged battery should be kept in its original carton until ready to be put into service. This type of battery will retain its "charged" condition indefinitely if protected from moisture. Dry batteries may be stacked in vertical columns, provided they are not stacked more than four high.

F. Preparing Dry Charged Batteries for Service

To prepare "dry charged" batteries for service, use approved battery-grade acid electrolyte (1.265 sp.gr. at 80 degrees F.). Care should be exercised in its use to prevent bodily injury or damage to clothing or other material, resulting from actual contact with the electrolyte. Electrolyte should be added to dry charged batteries in an area where water is readily available for flushing in case the electrolyte comes into contact with the body. Refer to instructions on side of electrolyte container for antidotes to use if electrolyte comes into contact with the body.

WARNING: It is strongly recommended that a person filling batteries with electrolyte wear glasses (preferably safety glasses) to prevent possible damage to the eyes should any splattering of the electrolyte occur.

- 1. Remove dry charged battery from its original carton.
- 2. Remove the vent plugs.
- 3. Using a glass or acid-proof plastic funnel, fill each battery cell with electrolyte. Do not use a metal funnel for filling the battery. The cell is properly filled when the electrolyte level rises to the split ring at the bottom of the vent well. Do not overfill or underfill. Overfilling will cause acid corrosion in the battery area; underfilling will cause early battery failure.
- 4. After filling cells, wait five to ten minutes and add additional electrolyte, if necessary, to bring the electrolyte to the proper level.
- 5. Never finish filling a dry charge battery with water. If electrolyte is spilled, more electrolyte must be obtained.

The dry charge battery may be put into service immediately after activation. However, to insure good battery performance, the following activation tests are recommended:

- 1. After adding electrolyte, check the open circuit voltage. Less than 10 volts indicate a reverse cell, or an open circuit and the battery should be replaced.
- 2. Check the specific gravity of all cells. If the specific gravity corrected to 80 degrees F. shows more than a 30-point drop (.030) from the initial filling with electrolyte, or if one or more cells gas violently after addition of electrolyte, the battery should be fully charged before use.
- 3. For best performance in cold weather (32 degrees F. or less), or if the battery and the electrolyte are not at 60 degrees F. or above at time of activation, warm the battery by boost charging.

DIVISION III

ADJUSTMENTS AND MINOR SERVICE

120-5 FUSIBLE LINK REPLACEMENT

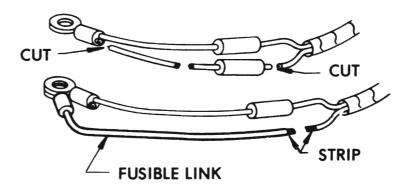
All Series Buicks have fusible links located between the starting motor post and the lower ends of the main supply wires. These links are the weakest point in the electrical supply system for the complete car and, as such, will act like a fuse for every wiring harness in the car.

Every electrical accessory is still protected by a fuse or circuit breaker, of course, but fusible links have been added to protect the wiring harnesses before the fuses. In the past, if a wire became grounded in the portion between the battery and the fuse block, a long section of the wire would burn out, making replacement of a complete wiring harness necessary. These wiring harnesses were generally expensive, complicated, and hard to get at; they often required many hours of a skilled electrician's time to replace them. Now, with the fusible links, a short or ground in any unfused wire will only cause a six-inch link at the starting motor to burn out. Because of its location, possibility of a fire, such as was sometimes caused by a burned-out wiring harness, is very remote.

All Series have two (2) fusible links connected to the starting motor post:

- 1. In the No. 12 red wire circuit which, for safety purposes, supplies only the headlight circuit.
- 2. In the No. 10 red wire circuit which supplies all electrical units except the headlights.

A fusible link is simply a short section of wire which is several sizes smaller in gauge than the wire in the circuit which it protects. The No. 10 wire supply circuit is protected by a No. 14 brown link; the No. 12 wire headlight circuit is protected by a No. 16 black link. See Figure 120-6. If a short or ground occurs in either of these circuits, the fusible link will melt before the insulation is damaged elsewhere in the circuit.


Replace a burned-out fusible link as follows:

NOTE: Always disconnect battery before attempting any electrical repairs.

- 1. Cut off burned-out link close to the starting motor post.
- 2. Cut off other end of burned-out link along with solder joint.
- 3. Strip insulation from end of new link and from end of wiring harness so that each will project halfway through soldering sleeve.
- 4. Crimp new link in soldering sleeve and solder carefully.
- 5. Cover new connection tightly with electrical tape.
- 6. Install new link connector eye on starter post.

A burned-out fusible link would be indicated by:

- 1. All electrical accessories dead except headlights; or, headlights dead but all other electrical units working.
- 2. Starter dead '2 won't even click. Even with a nearly

TO REPAIR DAMAGED FUSIBLE LINK
CUT OFF DAMAGED WIRE AS SHOWN.
STRIP BACK INSULATION. SPLICE WIRES
WITH SPLICE CLIP & SOLDER. TAPE
SPLICE WITH DOUBLE LAYER OF
ELECTRICAL TAPE.

120-7

Figure 120-6 Fusible Links

dead battery, the starter solenoid will generally engage. Therefore, no click means no solenoid action possibly due to a burned-out fusible link.

3. For a positive test for a burned-out No. 14 fusible link, turn blower switch to high-speed position, turn on ignition switch, but do not run engine. Connect a test light or a voltmeter between positive battery post and No. 10 red wire terminal at generator regulator. If test light lights brightly, or if voltmeter reads battery voltage, fusible link is burned out.

A voltmeter reading over .2 volt, but less than battery voltage, means that there is excessive resistance in the circuit but fusible link is still in place.

120-6 BATTERY RECHARGING

When the battery is being charged, an explosive gas mixture forms in each cell. Part of this gas escapes through the holes in the vent plugs and may form an explosive atmosphere around the battery itself if ventilation is poor. This explosive gas may remain in or around the battery for several hours after it has been charged. Sparks or flames can ignite this gas, causing an internal explosion which may shatter the battery.

The following precautions should be observed when charging a battery:

- 1. Do not smoke near the battery being charged or which has been very recently charged.
- 2. Do not break live circuits near the battery top because a spark usually occurs at the point where a live circuit is broken. Care must always be taken when connecting or disconnecting leads. Poor connections are also a common cause of electrical arcs which cause explosions.

NOTE: It is recommended that the negative jumper cable be attached at a point remote from the battery (such as the Delcotron adjusting brace). This then should be connected after the positive jumper cable and disconnected before the positive jumper is attached or removed.

3. Exercise care when attaching charger leads to side terminal battery studs to avoid contact with vehicle metal components which would result in damage to the battery.

When out of the vehicle, the battery will require adapters for the terminals to provide a place for attachment of the charging leads. See Figure 120-7.

When the battery is in the vehicle, the studs provided in the wiring harness are suitable for attachment of the charger's leads.

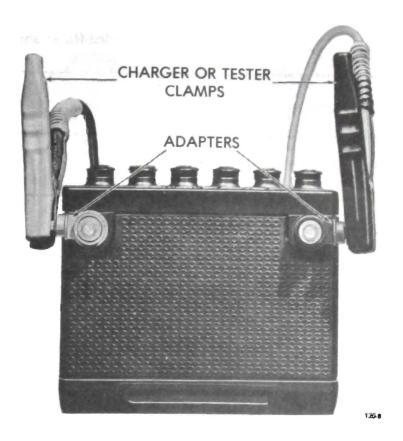


Figure 120-7 Side Terminal Battery Charging Adapters

There are two separate methods of recharging batteries which differ basically in the rate of charge. In the slow-charge method, the battery is supplied a relatively small amount of current for an extended period of time. In the quick-charge method, the battery is supplied with a high current for a short period of time.

A. Slow-Charging

Slow charging is the best and only method of completely charging a battery. The slow-charge method, properly applied, may be safely used under all possible conditions of the battery, provided electrolyte is at proper level in all cells. The battery may be fully charged by this method, unless the battery is not capable of taking a full charge. The normal slow charging rate for the 12-volt battery is 5 amperes.

Full charge of battery is indicated when all cell specific gravities do not increase when checked at three intervals of one hour and all cells are gassing freely.

Due to the low rate during slow charging, plenty of time must be allowed. Charge periods of 24 hours or more are often required. See Figure 120-8 for slow charging guide.

B. Quick-Charging

Since time is often of most importance to the battery owner, quick-charging must sometimes be used to

CHARGING GUIDE

Recommended Rate* and Time for Fully Discharged Condition

Watt Rating	5 Amperes	10 Amperes	20 Amperes	30 Amperes	40 Amperes	50 Amperes
Below 2450	10 Hours	5 Hours	2½ Hours	2 Hours		
2450-2950	12 Hours	6 Hours	3 Hours	2 Hours	1½ Hours	
Above 2950	15 Hours	7½ Hours	3¼ Hours	2 Hours	1¾ Hours	1½ Hours

^{*}Initial rate for constant voltage taper rate charger.

To avoid damage, charging rate must be reduced or temporarily halted if:

- 1. Electrolyte temperature exceeds 125° F.
- 2. Violent gassing or spewing of electrolyte occurs.

Battery is fully charged when over a two hour period at a low charging rate in amperes all cells are gassing freely and no change in specific gravity occurs. For the most satisfactory charging, the lower chargin rates in amperes are recommended.

Full charge specific gravity is 1.260 - 1.280 corrected for temperature with electrolyte level at split ring.

120-9

Figure 120-8 Battery Slow Charging Guide

partially charge the battery so that the engine will start and the owner can be on his way.

Charge at 50 amperes for 20 minutes (50 x 20 1,000 ampere minutes). If charger will not give this rate, charge for an equal number of ampere minutes at the best rate available.

CAUTION: Too high a current during quick-charging will damage battery plates.

A battery cannot be brought up to a full-charged condition by the quick-charge method. The battery can be substantially recharged or boosted but, in order to bring the battery to a fully-charged condition, the charging cycle must be finished by charging at a low or normal rate. Some quick-chargers have a provision for finishing the charging cycle at a low rate so that the battery can be brought up to a fully-charged condition.

Used with care, and employing all safeguards provided by the manufacturer, a quick-charger will not damage a battery which is in good condition.

120-7 PERIODIC BATTERY INSPECTION AND SERVICE

The battery requires very little attention, but periodic inspection is essential to secure the maximum efficiency and life. The following services are essential to maintain the battery at maximum efficiency.

WARNING: The hydrogen gas which is produced in the battery cells during charging is dangerously explosive. Extreme care must be taken to avoid bringing open flames, lighted matches, etc., near a battery which is, or has been, recently on charge and which is, or has been, gassing. Likewise, care must be taken to avoid causing any sparks near a battery with jumper cables or fast charger cables, since this can also set off an explosion of the gases.

A. Maintain Electrolyte Level

The Energizer features a Delco Eye, which is a specifically-designed vent plug with a transparent rod extending through the center. See Figure 120-9. When the electrolyte is at the proper level, the lower tip of the rod is immersed, and the exposed top of the rod will appear very dark; when the level falls below the tip of the rod, the top will glow. The Delco Eye reveals

at a glance if water is needed, without the necessity of removing the vent plugs. See Figure 120-10.

The Delco Eye is used in only one cell because when the electrolyte level is low in one cell, it is normally low in all cells. Thus, when the Delco Eye indicates water is needed, check the level in all six cells.

Add distilled water as required to maintain the electrolyte level at the split ring at bottom of filler well. See Figure 120-11.

WARNING: Do not overfill, as electrolyte may be sprayed out by gassing, or may overflow due to heat expansion during charging.

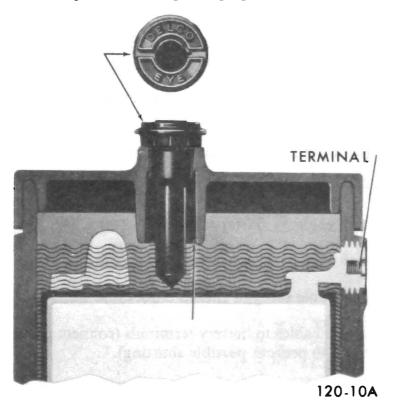


Figure 120-9 Electrolyte Level Correct

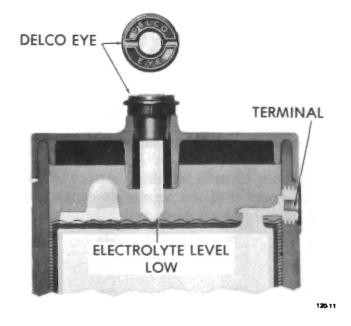


Figure 120-10 Low Electrolyte Level

Figure 120-11 View Inside Vent Well Showing Electrolyte

If distilled water is not available, it is better to add clean mineral-free tap water than to allow the electrolyte level to remain below the top of the plates.

In freezing weather the water should be added just before using the car or otherwise charging the battery so that the water will be mixed with the acid before it is allowed to stand in freezing temperatures.

If it is found necessary to add water to the battery more frequently than about every 1,000 miles and the quantity of water added per cell is great, check setting of voltage regulator and adjust, if necessary. Abnormal water loss is an indication that the battery is being overcharged.

B. Inspect Battery, Mounting, and Cables

Check outside of battery for damage or signs of serious abuse, such as broken case or broken covers. Check inside of battery by removing the vent caps and inspecting for signs of abuse, such as electrolyte level too low, or bad or unusual odors. If battery shows signs of serious damage or abuse, it should be replaced.

Check the battery ..old down bolts to make certain that battery is securely held in place. Excessive tightening may distort or crack the battery case.

If the top of battery is dirty or the hold down strap is corroded, clean thoroughly with a brush dipped in ammonia or soda solution. Care must be used to prevent any solution from getting into battery cells. After the foaming of solution stops, flush off with clean water and dry thoroughly. If hold down strap is corroded, it should be painted with acid-resisting paint after cleaning.

Check battery cables to make certain they are tight at battery terminals, engine mounting bracket, and junction block. If a connection is found loose, it should be cleaned before being tightened, as arcing and corrosion may have taken place in the loose connection. Check condition of cables and replace if badly corroded or frayed.

120-8 CLEANING CABLE TERMINALS

A. Side Terminal Battery

Construction of the side terminal battery is such that the mating cable connector seals the junction and provides a permanently tight and clean connection. Cleaning cable or battery terminals should never be necessary.

DIVISION IV

REMOVAL AND INSTALLATION

120-9 BATTERY REMOVAL AND INSTALLATION

A. Removal

- 1. Disconnect battery cables. (Remove negative cable first to prevent possible shorting.)
- 2. Remove battery hold down bracket.
- 3. Using Tool J-23686, pull battery out, as shown in Figure 120-12.

Figure 120-12 Battery Lifting Tool

B. Installation

- 1. Place battery in carrier and tighten hold down bracket bolt to 60-80 lb.in.
- 2. Install battery cables. (Install positive cable first to prevent possible shorting.)
- 3. Torque side terminal cables to 60-90 lb.in. or tighten bolts until the terminals cannot be rotated by hand, then torque bolts 1/2 turn more.

120-10 BATTERY CABLE REMOVAL AND INSTALLATION

A. Positive Cable

- 1. Disconnect cable at battery. disconnect negative cable first to prevent possible shorting.)
- 2. Remove wiring harness bracket screws holding bracket to engine block.
- 3. Disconnect cable at starter solenoid.
- 4. Remove cable from chassis slips and remove cable.
- 5. Install cable on starter solenoid.
- 6. Install wire harness bracket.
- 7. Install cable through chassis clips.
- 8. Connect cables to battery terminals (connect positive cable first to prevent possible shorting).
- 9. Torque side terminal cable to 60-90 lb.in. or tighten bolts until the terminals cannot be rotated by hand, then torque bolts 1/2 turn more.

B. Negative Cable

- 1. Disconnect battery cable at terminal.
- 2. Remove cable from chassis clips.
- 3. Remove delcotron bracket bolt and remove cable.
- 4. Reverse above steps to install.
- 5. Torque bolts on side terminal battery to 60-90 lb.in. or tighten bolts until the terminals cannot be rotated by hand, then 1/2 turn more.

DIVISION VI SPECIFICATIONS

120-11 BATTERY SPECIFICATIONS	350 Eng. 4D-4F-4H Series	455 Eng. 4G Series 350 Eng. H.D. Cooling Opt. 4D-4F-4H Series	350 Eng. 4L-4N Series	455 Eng. 4L-4N-4R-4P-4U- 4V-4Y Series 350 Eng. H.D. Cooling Opt. 4L-4N Series
Make	Delco 1980145 Rt. Front Side Screw Type Negative 12 R59 2900 6, 11 1.260 to 1.280 5 Amps. 2 Amps.	Delco 1980153 Rt. Front Side Screw Type Negative 12 R69 3150 6, 13 1.260 to 1.280 5 Amps. 2 Amps.	Delco 1980145 Rt. Front Side Screw Type Negative 12 R89 2900 6, 11 1.260 to 1.280 5 Amps. 2 Amps.	Delco 1980144 Rt. Front Side Screw Type Negative 12 Y91 3000 6, 11 1.260 to 1.280 5 Amps. 2 Amps. Hard Rubber
Dimensions (Overall) Length	10 1/4 6 13/16 8 3/4	10 1/4 6 13/16 8 3/4	10 1/4 6 13/16 8 3/4	12 1/32 6 13/16 8 3/4